Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

"add DGXH100 platform option" #1444

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 103 additions & 1 deletion PyTorch/Classification/ConvNets/configs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,10 @@ platform:
workers: 10
prefetch: 4
gpu_affinity: socket_unique_contiguous

DGXH100:
workers: 10
prefetch: 4
gpu_affinity: socket_unique_contiguous
mode:
benchmark_training: &benchmark_training
print_freq: 1
Expand Down Expand Up @@ -168,6 +171,25 @@ models:
FP32:
<<: *resnet_params_2k
batch_size: 128
DGXH100:
AMP:
<<: *resnet_params_2k
arch: resnet50
batch_size: 256
memory_format: nhwc
TF32:
<<: *resnet_params_2k
arch: resnet50
batch_size: 256
T4:
AMP:
<<: *resnet_params_2k
arch: resnet50
batch_size: 256
memory_format: nhwc
FP32:
<<: *resnet_params_2k
batch_size: 128
# }}}
resnext101-32x4d: # {{{
DGX1V: &RNXT_DGX1V
Expand Down Expand Up @@ -204,6 +226,16 @@ models:
<<: *resnet_params_1k
arch: resnext101-32x4d
batch_size: 64
DGXH100:
AMP:
<<: *resnet_params_1k
arch: resnext101-32x4d
batch_size: 128
memory_format: nhwc
TF32:
<<: *resnet_params_1k
arch: resnext101-32x4d
batch_size: 128
# }}}
se-resnext101-32x4d: # {{{
DGX1V: &SERNXT_DGX1V
Expand All @@ -230,6 +262,16 @@ models:
<<: *resnet_params_1k
arch: se-resnext101-32x4d
batch_size: 128
DGXH100:
AMP:
<<: *resnet_params_1k
arch: se-resnext101-32x4d
batch_size: 128
memory_format: nhwc
TF32:
<<: *resnet_params_1k
arch: se-resnext101-32x4d
batch_size: 128
T4:
AMP:
<<: *resnet_params_1k
Expand Down Expand Up @@ -282,6 +324,16 @@ models:
<<: *efficientnet_b0_params_4k
arch: efficientnet-widese-b0
batch_size: 256
DGXH100:
AMP:
<<: *efficientnet_b0_params_4k
arch: efficientnet-widese-b0
batch_size: 256
memory_format: nhwc
TF32:
<<: *efficientnet_b0_params_4k
arch: efficientnet-widese-b0
batch_size: 256
# }}}
efficientnet-b0: # {{{
T4:
Expand Down Expand Up @@ -324,6 +376,16 @@ models:
<<: *efficientnet_b0_params_4k
arch: efficientnet-b0
batch_size: 256
DGXH100:
AMP:
<<: *efficientnet_b0_params_4k
arch: efficientnet-b0
batch_size: 256
memory_format: nhwc
TF32:
<<: *efficientnet_b0_params_4k
arch: efficientnet-b0
batch_size: 256
# }}}
efficientnet-quant-b0: # {{{
T4:
Expand Down Expand Up @@ -366,6 +428,16 @@ models:
<<: *efficientnet_b0_params_4k
arch: efficientnet-quant-b0
batch_size: 256
DGXH100:
AMP:
<<: *efficientnet_b0_params_4k
arch: efficientnet-quant-b0
batch_size: 256
memory_format: nhwc
TF32:
<<: *efficientnet_b0_params_4k
arch: efficientnet-quant-b0
batch_size: 256
# }}}
efficientnet-widese-b4: # {{{
T4:
Expand Down Expand Up @@ -408,6 +480,16 @@ models:
<<: *efficientnet_b4_params_4k
arch: efficientnet-widese-b4
batch_size: 64
DGXH100:
AMP:
<<: *efficientnet_b4_params_4k
arch: efficientnet-widese-b4
batch_size: 128
memory_format: nhwc
TF32:
<<: *efficientnet_b4_params_4k
arch: efficientnet-widese-b4
batch_size: 64
# }}}
efficientnet-b4: # {{{
T4:
Expand Down Expand Up @@ -450,6 +532,16 @@ models:
<<: *efficientnet_b4_params_4k
arch: efficientnet-b4
batch_size: 64
DGXH100:
AMP:
<<: *efficientnet_b4_params_4k
arch: efficientnet-b4
batch_size: 128
memory_format: nhwc
TF32:
<<: *efficientnet_b4_params_4k
arch: efficientnet-b4
batch_size: 64
# }}}
efficientnet-quant-b4: # {{{
T4:
Expand Down Expand Up @@ -492,4 +584,14 @@ models:
<<: *efficientnet_b4_params_4k
arch: efficientnet-quant-b4
batch_size: 64
DGXH100:
AMP:
<<: *efficientnet_b4_params_4k
arch: efficientnet-quant-b4
batch_size: 128
memory_format: nhwc
TF32:
<<: *efficientnet_b4_params_4k
arch: efficientnet-quant-b4
batch_size: 64
# }}}