-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain_qaoe_task_specific.py
214 lines (180 loc) · 7.24 KB
/
main_qaoe_task_specific.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from utils.lib import *
from model import LAVENDER_Base
from agent import Agent_Base
from dataset import Dataset_Base, get_dl
from utils.args import get_args
from utils.logger import LOGGER, add_log_to_file
from utils.dist import (
NoOp, is_main_process, all_gather,
get_rank, get_world_size, iter_tqdm)
class Dataset_QAOE_TS(Dataset_Base):
def __init__(self, args, img_tsv_path, txt, id2lineidx, split, tokzr=None):
super().__init__(
args, split, size_frame=args.size_frame, tokzr=tokzr)
self.txt = txt[split]
self.img_tsv_path = img_tsv_path
self.id2lineidx = id2lineidx
if args.data_ratio != 1:
self.get_partial_data()
if "ans2label" in txt:
ans2label = txt["ans2label"]
self.label2ans = {v: k for k, v in ans2label.items()}
else:
self.label2ans = None
def __len__(self):
return len(self.txt)
def __getitem__(self, idx):
item = self.txt[idx]
video_id = item['video']
if video_id in self.id2lineidx:
lineidx = self.id2lineidx[video_id]
b = self.seek_img_tsv(lineidx)[2:]
img = self.get_img_or_video(b)
else:
print(f"video missing: {video_id}")
img = T.zeros(
(self.args.size_frame, 3,
self.args.size_img, self.args.size_img))
txt, mask = self.str2txt(item['question'])
if video_id not in self.id2lineidx:
ans = -1
else:
ans = item['answer']
return img, txt, mask, ans
def collate_batch(self, inputs):
img, txt, mask, ans = map(list, unzip(inputs))
all_imgs = T.stack(img, dim=0)
all_ans = T.LongTensor(ans)
all_txts = T.stack(txt, dim=0)
all_masks = T.stack(mask, dim=0)
batch = {
"img": all_imgs, "txt": all_txts,
"mask": all_masks, "ans": all_ans}
return batch
class LAVENDER_QAOE_TS(LAVENDER_Base):
def __init__(self, args, tokzr=None):
super().__init__(args, tokzr)
self.fc = T.nn.Sequential(*[
T.nn.Dropout(0.1),
T.nn.Linear(self.hidden_size, self.hidden_size*2),
T.nn.ReLU(inplace=True),
T.nn.Linear(self.hidden_size*2, args.size_vocab)])
def forward(self, img, txt, mask, ans):
(_B, _T, _, _H, _W), (_, _X) = img.shape, txt.shape
_h, _w = _H//32, _W//32
feat_img, mask_img, feat_txt, mask_txt = self.go_feat(img, txt, mask)
out, _ = self.go_cross(feat_img, mask_img, feat_txt, mask_txt)
out = self.fc(out[:, (1+_h*_w)*_T, :])
return out, ans
def reinit_head(self):
del self.fc
self.fc = T.nn.Sequential(*[
T.nn.Dropout(0.1),
T.nn.Linear(self.hidden_size, self.hidden_size*2),
T.nn.ReLU(inplace=True),
T.nn.Linear(self.hidden_size*2, args.size_vocab)])
class Agent_QAOE_TS(Agent_Base):
def __init__(self, args, model):
super().__init__(args, model)
self.log = defaultdict(list)
def step(self, img, txt, mask, ans, is_train):
with T.cuda.amp.autocast(enabled=not self.args.deepspeed):
out = self.forward_step((img, txt, mask, ans))
out, ans = out
ls = self.loss_func(out, ans)
if is_train:
self.backward_step(ls)
return ls.item()
else:
out = T.argmax(out, dim=1)
ac = (out == ans).float().tolist()
return ac
def go_dl(self, ep, dl, is_train):
if is_train:
self.model.train()
else:
self.model.eval()
ret = []
idx = 0
for idx, batch in enumerate(dl):
if idx % self.args.logging_steps == 0 and is_train:
LOGGER.info(self.log_memory(ep, idx+1))
(img, txt, mask, ans) = self.prepare_batch(batch)
curr_ret = self.step(img, txt, mask, ans, is_train)
if isinstance(curr_ret, list):
ret.extend(curr_ret)
else:
ret.append(curr_ret)
if idx % self.args.logging_steps != 0 and is_train:
LOGGER.info(self.log_memory(ep, idx+1))
gathered_ret = []
for ret_per_rank in all_gather(ret):
gathered_ret.extend(ret_per_rank)
num_ex = len(gathered_ret)
ret = float(np.average(gathered_ret))
return ret
if __name__ == '__main__':
args = get_args()
tokzr = transformers.AutoTokenizer.from_pretrained(args.tokenizer)
img_path = f'{args.data_dir}/img_{args.dataset}.tsv'
LOGGER.info(f"rank {get_rank()}: loading video frames from {img_path}")
lineidx_data = pickle.load(open(
f'{args.data_dir}/img_{args.dataset}.id2lineidx.pkl', 'rb'))
txt_path = f'{args.data_dir}/txt_{args.task}.json'
LOGGER.info(f"rank{get_rank()}: loading text from {txt_path}")
txt_data = json.load(open(txt_path, 'r'))
ds_tr, ds_vl, ds_ts = [
Dataset_QAOE_TS(
args, img_path, txt_data, lineidx_data, split, tokzr=tokzr)
for split in ['train', 'val', 'test']]
LOGGER.info(
f"Train: {len(ds_tr)}, Val: {len(ds_vl)},"
f" Test: {len(ds_ts)}, data_ratio: {args.data_ratio}")
dl_tr, dl_vl, dl_ts = [
get_dl(ds, args, worker_init_fn=ds.read_tsv)
for ds in [ds_tr, ds_vl, ds_ts]]
args.max_iter = len(dl_tr) * args.size_epoch
args.actual_size_test = len(dl_ts.dataset)
model = LAVENDER_QAOE_TS(args, tokzr=tokzr)
model.load_ckpt(args.path_ckpt)
if args.reinit_head:
model.reinit_head()
model.cuda()
if args.distributed:
LOGGER.info(f"n_gpu: {args.num_gpus}, rank: {get_rank()},"
f" world_size: {get_world_size()}")
args.path_output = '%s/_%s_%s' % (
args.path_output, args.task,
datetime.now().strftime('%Y%m%d%H%M%S'))
agent = Agent_QAOE_TS(args, model)
if args.distributed:
agent.prepare_dist_model()
agent.save_training_meta()
if is_main_process():
add_log_to_file('%s/stdout.txt' % (args.path_output))
else:
LOGGER = NoOp()
# DIST.barrier()
LOGGER.info("Saved training meta infomation, start training ...")
for e in iter_tqdm(range(args.size_epoch)):
ls_tr = agent.go_dl(e+1, dl_tr, True)
ac_vl = agent.go_dl(e+1, dl_vl, False)
ac_ts = agent.go_dl(e+1, dl_ts, False)
if hasattr(args, "size_test"):
adjusted_ac_ts = ac_ts * args.actual_size_test / args.size_test
agent.log['ls_tr'].append(ls_tr)
agent.log['ac_vl'].append(ac_vl)
agent.log['ac_ts'].append(adjusted_ac_ts)
LOGGER.info('Ep %d: %.6f %.2f %.2f (adjusted: %.2f)' % (
e+1, ls_tr, ac_vl*100, ac_ts*100, adjusted_ac_ts*100))
else:
agent.log['ls_tr'].append(ls_tr)
agent.log['ac_vl'].append(ac_vl)
agent.log['ac_ts'].append(ac_ts)
LOGGER.info('Ep %d: %.6f %.2f %.2f' % (
e+1, ls_tr, ac_vl*100, ac_ts*100))
agent.save_model(e+1)
best_vl, best_ts = agent.best_epoch()
LOGGER.info(f'Best val @ ep {best_vl[0]+1}, {best_vl[1]*100:.2f}')
LOGGER.info(f'Best test @ ep {best_ts[0]+1}, {best_ts[1]*100:.2f}'
f' (adjusted)')