-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
79 lines (65 loc) · 2.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import torch
import random
import numpy as np
from config.all_config import AllConfig
from torch.utils.tensorboard.writer import SummaryWriter
from datasets.data_factory import DataFactory
from model.model_factory import ModelFactory
from modules.metrics import t2v_metrics, v2t_metrics
from modules.loss import LossFactory
from trainer.trainer import Trainer
from modules.optimization import AdamW, get_cosine_schedule_with_warmup
def main():
config = AllConfig()
os.environ['TOKENIZERS_PARALLELISM'] = "false"
if not config.no_tensorboard:
writer = SummaryWriter(log_dir=config.tb_log_dir)
else:
writer = None
if config.seed >= 0:
torch.manual_seed(config.seed)
np.random.seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
random.seed(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if config.huggingface:
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32", TOKENIZERS_PARALLELISM=False)
else:
from modules.tokenization_clip import SimpleTokenizer
tokenizer = SimpleTokenizer()
train_data_loader = DataFactory.get_data_loader(config, split_type='train')
valid_data_loader = DataFactory.get_data_loader(config, split_type='test')
model = ModelFactory.get_model(config)
if config.metric == 't2v':
metrics = t2v_metrics
elif config.metric == 'v2t':
metrics = v2t_metrics
else:
raise NotImplemented
params_optimizer = list(model.named_parameters())
clip_params = [p for n, p in params_optimizer if "clip." in n]
noclip_params = [p for n, p in params_optimizer if "clip." not in n]
optimizer_grouped_params = [
{'params': clip_params, 'lr': config.clip_lr},
{'params': noclip_params, 'lr': config.noclip_lr}
]
optimizer = AdamW(optimizer_grouped_params, weight_decay=config.weight_decay)
num_training_steps = len(train_data_loader) * config.num_epochs
num_warmup_steps = int(config.warmup_proportion * num_training_steps)
scheduler = get_cosine_schedule_with_warmup(optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps)
loss = LossFactory.get_loss(config)
trainer = Trainer(model, loss, metrics, optimizer,
config=config,
train_data_loader=train_data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=scheduler,
writer=writer,
tokenizer=tokenizer)
trainer.train()
if __name__ == '__main__':
main()