-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsample.py
36 lines (27 loc) · 1.08 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import argparse
import numpy as np
from chainer import serializers
from models import Generator
import plot
# Resize the MNIST dataset to 32x32 images for convenience
# since the generator will create images with dimensions
# of powers of 2 (doubling upsampling in each deconvolution).
im_shape = (32, 32)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--n-z', type=int, default=10)
parser.add_argument('--n-samples', type=int, default=128)
parser.add_argument('--in-generator-filename', type=str, default='generator.model')
parser.add_argument('--out-filename', type=str, default='sample.png')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
n_z = args.n_z
n_samples = args.n_samples
in_generator_filename = args.in_generator_filename
out_filename = args.out_filename
generator = Generator(n_z, im_shape)
serializers.load_hdf5(in_generator_filename, generator)
zs = np.random.uniform(-1, 1, (n_samples, n_z)).astype(np.float32)
x = generator(zs)
plot.save_ims(out_filename, x.data)