forked from pkuzhf/storage-gym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
51 lines (45 loc) · 2.17 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import config, utils
def evaluate(agent_net):
n = config.Map.Height
m = config.Map.Width
mazemap = []
for i in range(n):
mazemap.append([])
for j in range(m):
mazemap[i].append(np.zeros(4))
utils.setCellValue(mazemap, i, j, np.random.binomial(1, config.Map.WallDense))
cell_value_memory = {}
open(config.StrongMazeEnv.EvaluateFile, 'w')
for distance in range(1, n + m):
sum_score = 0
for sx in range(n):
for sy in range(m):
if utils.equalCellValue(mazemap, sx, sy, utils.Cell.Wall):
continue
utils.setCellValue(mazemap, sx, sy, utils.Cell.Source)
score = 0
count = 0
output = ''
for tx in range(n):
for ty in range(m):
if utils.equalCellValue(mazemap, tx, ty, utils.Cell.Empty) and utils.getDistance(sx, sy, tx, ty) <= distance:
count += 1
utils.setCellValue(mazemap, tx, ty, utils.Cell.Target)
memory_id = str(sx) + '_' + str(sy) + '_' + str(tx) + '_' + str(ty)
if memory_id in cell_value_memory:
dir_id = cell_value_memory[memory_id]
else:
dir_id = np.array(agent_net.predict(np.array([[mazemap]]))).argmax()
cell_value_memory[memory_id] = dir_id
output += utils.dir_symbols[dir_id]
utils.setCellValue(mazemap, tx, ty, utils.Cell.Empty)
if utils.getDistance(sx, sy, tx, ty) > utils.getDistance(sx + utils.dirs[dir_id][0], sy + utils.dirs[dir_id][1], tx, ty):
score += 1
sum_score += float(score) / count
utils.setCellValue(mazemap, sx, sy, utils.Cell.Empty)
sum_score /= n * m
print [distance, sum_score]
f = open(config.StrongMazeEnv.EvaluateFile, 'a')
f.write(str(distance) + '\t' + str(sum_score) + '\n')
f.close()