forked from LiJiaBei-7/nrccr
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
661 lines (515 loc) · 24.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import torch.nn as nn
import torch.nn.init
import torch.nn.functional as F
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.nn.utils.clip_grad import clip_grad_norm_
import numpy as np
from basic.bigfile import BigFile
from loss import TripletLoss, dtl_feat, DtlLoss
from transformers import BertModel
import copy
from transformer_cross import BertAttention, TrainablePositionalEncoding, LinearLayer
def l2norm(X):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
X = torch.div(X, norm)
return X
def xavier_init_fc(fc):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.) / np.sqrt(fc.in_features +
fc.out_features)
fc.weight.data.uniform_(-r, r)
fc.bias.data.fill_(0)
class MFC(nn.Module):
"""
Multi Fully Connected Layers
"""
def __init__(self, fc_layers, dropout, have_dp=True, have_bn=False, have_last_bn=False):
super(MFC, self).__init__()
# fc layers
self.n_fc = len(fc_layers)
if self.n_fc > 1:
if self.n_fc > 1:
self.fc1 = nn.Linear(fc_layers[0], fc_layers[1])
# dropout
self.have_dp = have_dp
if self.have_dp:
self.dropout = nn.Dropout(p=dropout)
# batch normalization
self.have_bn = have_bn
self.have_last_bn = have_last_bn
if self.have_bn:
if self.n_fc == 2 and self.have_last_bn:
self.bn_1 = nn.BatchNorm1d(fc_layers[1])
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
if self.n_fc > 1:
xavier_init_fc(self.fc1)
def forward(self, inputs):
if self.n_fc <= 1:
features = inputs
elif self.n_fc == 2:
features = self.fc1(inputs)
# batch normalization
if self.have_bn and self.have_last_bn:
features = self.bn_1(features)
if self.have_dp:
features = self.dropout(features)
return features
# video encoder
class video_transformer_encoding(nn.Module):
def __init__(self, opt):
super(video_transformer_encoding, self).__init__()
self.input_drop = 0.1
self.max_ctx_l = 80
self.num_attention_heads = opt.video_num_attention
self.hidden_size = opt.video_hidden_size
self.input_proj_layer = LinearLayer(opt.visual_feat_dim, self.hidden_size, layer_norm=True,
dropout=self.input_drop, relu=True)
self.pos_embed_layer = TrainablePositionalEncoding(max_position_embeddings=self.max_ctx_l,
hidden_size=self.hidden_size, dropout=self.input_drop)
self.encoder_layers = []
self.layer = opt.video_layer
self.encoder_layer = BertAttention(opt, self.num_attention_heads, self.hidden_size)
for i in range(self.layer-1):
self.encoder_layers.append(copy.deepcopy(self.encoder_layer).cuda())
self.pooling = opt.video_pooling
def forward(self, videos):
videos, videos_origin, lengths, videos_mask = videos
feat = self.input_proj_layer(videos)
feat = self.pos_embed_layer(feat)
mask = videos_mask.unsqueeze(1) # (N, 1, L), torch.FloatTensor
feat = self.encoder_layer(feat, feat, mask, mask).cuda() # (N, L, D_hidden)
for encoder_layer in self.encoder_layers:
feat = encoder_layer(feat, feat, mask, mask)
if self.pooling == 'mean':
feat = F.avg_pool1d(feat.permute(0, 2, 1), feat.size(1)).squeeze(2)
else:
feat = F.max_pool1d(feat.permute(0, 2, 1), feat.size(1)).squeeze(2)
return feat
# image encoder for pre-extracted frame features
class image_encoding(nn.Module):
def __init__(self, opt):
super(image_encoding, self).__init__()
self.proj = nn.Linear(opt.visual_feat_dim, opt.visual_feat_dim)
def forward(self, images):
feat = F.relu(self.proj(images))
return feat
# image encoder for clip
import clip
class image_encoding_clip(nn.Module):
def __init__(self, opt):
super(image_encoding_clip, self).__init__()
self.img_encoder = opt.img_encoder
# ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14']
self.encoder, _ = clip.load(opt.img_encoder_name, device='cuda')
self.encoder = self.encoder.float()
self.proj = nn.Linear(opt.img_encoder_input_dim, opt.visual_feat_dim)
def forward(self, images):
images = self.encoder.encode_image(images)
images = torch.tensor(images,dtype=torch.float,requires_grad=True)
return self.proj(images)
# bert encoder
class Text_bert_encoding(nn.Module):
def __init__(self, opt):
super(Text_bert_encoding, self).__init__()
self.dropout = nn.Dropout(p=opt.dropout)
self.txt_bert_params = {
'hidden_dropout_prob': 0.1,
'attention_probs_dropout_prob': 0.1,
}
txt_bert_config = 'bert-base-multilingual-cased'
self.text_bert = BertModel.from_pretrained(txt_bert_config, return_dict=True, **self.txt_bert_params)
def forward(self, text, *args):
# Embed word ids to vectors
bert_caps, cap_mask = text
batch_size, max_text_words = bert_caps.size()
token_type_ids_list = [] # Modality id
position_ids_list = [] # Position
ids_size = (batch_size,)
for pos_id in range(max_text_words):
token_type_ids_list.append(torch.full(ids_size, 0, dtype=torch.long))
position_ids_list.append(torch.full(ids_size, pos_id, dtype=torch.long))
token_type_ids = torch.stack(token_type_ids_list, dim=1).cuda()
position_ids = torch.stack(position_ids_list, dim=1).cuda()
text_bert_output = self.text_bert(bert_caps,
attention_mask=cap_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=None)
del text
torch.cuda.empty_cache()
return text_bert_output
# text encoder
class Text_share(nn.Module):
def __init__(self, opt):
super(Text_share, self).__init__()
self.max_ctx_l = 250
self.bert_out_dim = 768
self.input_drop = 0.1
self.hidden_size = opt.text_hidden_size
self.num_attention_heads = opt.text_num_attention
self.input_proj_layer = LinearLayer(self.bert_out_dim, self.hidden_size, layer_norm=True,
dropout=self.input_drop, relu=True)
self.pos_embed_layer = TrainablePositionalEncoding(max_position_embeddings=self.max_ctx_l,
hidden_size=self.hidden_size, dropout=self.input_drop)
self.layer = opt.text_layer
self.encoder_layer = BertAttention(opt, self.num_attention_heads, self.hidden_size)
self.text_bert = Text_bert_encoding(opt)
self.pooling = opt.text_pooling
def forward(self, texts, reference=False):
if reference:
text, text_trans = texts
else:
text, text_trans, text_back = texts
bert_caps, lengths, cap_mask = text
bert_caps_trans, lengths_trans, cap_mask_trans = text_trans
# EN
bert_out = self.text_bert((bert_caps, cap_mask))
bert_seq = bert_out.last_hidden_state
feat = self.input_proj_layer(bert_seq)
feat = self.pos_embed_layer(feat)
mask = cap_mask.unsqueeze(1)
# trans
bert_out_trans = self.text_bert((bert_caps_trans, cap_mask_trans))
bert_seq_trans = bert_out_trans.last_hidden_state
feat_trans = self.input_proj_layer(bert_seq_trans)
feat_trans = self.pos_embed_layer(feat_trans)
mask_trans = cap_mask_trans.unsqueeze(1)
feat_self = self.encoder_layer(feat, feat, mask, mask).cuda() # (N, L, D_hidden)
feat_self_trans = self.encoder_layer(feat_trans, feat_trans, mask_trans, mask_trans).cuda() # (N, L, D_hidden)
if self.pooling == 'mean':
feat_vec = F.avg_pool1d(feat_self.permute(0, 2, 1), feat_self.size(1)).squeeze(2)
feat_trans_vec = F.avg_pool1d(feat_self_trans.permute(0, 2, 1), feat_self_trans.size(1)).squeeze(2)
if reference:
return feat_vec, feat_trans_vec
feat_cross = self.encoder_layer(feat, feat_trans, mask, mask_trans, cross=True)
del feat, feat_self, feat_self_trans
# back
bert_caps_back, lengths_back, cap_mask_back = text_back
bert_out_back = self.text_bert((bert_caps_back, cap_mask_back))
bert_seq_back = bert_out_back.last_hidden_state
feat_back = self.input_proj_layer(bert_seq_back)
feat_back = self.pos_embed_layer(feat_back)
mask_back = cap_mask_back.unsqueeze(1)
feat_self_back = self.encoder_layer(feat_back, feat_back, mask_back, mask_back)
if self.pooling == 'mean':
# pooling_cat
feat_cross = torch.cat((feat_cross, feat_trans), 1)
feat_cross_vec = F.avg_pool1d(feat_cross.permute(0, 2, 1), feat_cross.size(1)).squeeze(2)
feat_back_vec = F.avg_pool1d(feat_self_back.permute(0, 2, 1), feat_self_back.size(1)).squeeze(2)
return (feat_vec, feat_trans_vec, feat_cross_vec, feat_back_vec), (bert_seq, bert_seq_trans)
class Latent_mapping(nn.Module):
"""
Latent space mapping (Conference version)
"""
def __init__(self, mapping_layers, dropout, l2norm=True):
super(Latent_mapping, self).__init__()
self.l2norm = l2norm
# visual mapping
self.mapping = MFC(mapping_layers, dropout, have_bn=True, have_last_bn=True)
def forward(self, features):
# mapping to latent space
latent_features = self.mapping(features)
if self.l2norm:
latent_features = l2norm(latent_features)
return latent_features
class BaseModel(object):
def state_dict(self):
state_dict = [self.vid_encoding.state_dict(), self.text_encoding.state_dict(), self.vid_mapping.state_dict(), self.text_mapping.state_dict(), self.AdvAgent.state_dict()]
return state_dict
def load_state_dict(self, state_dict):
self.vid_encoding.load_state_dict(state_dict[0])
self.text_encoding.load_state_dict(state_dict[1])
self.vid_mapping.load_state_dict(state_dict[2])
self.text_mapping.load_state_dict(state_dict[3])
self.AdvAgent.load_state_dict(state_dict[4])
def train_start(self):
"""switch to train mode
"""
self.vid_encoding.train()
self.text_encoding.train()
self.vid_mapping.train()
self.text_mapping.train()
self.AdvAgent.train()
def val_start(self):
"""switch to evaluate mode
"""
self.vid_encoding.eval()
self.text_encoding.eval()
self.vid_mapping.eval()
self.text_mapping.eval()
self.AdvAgent.eval()
def init_info(self, opt):
# init gpu
if torch.cuda.is_available():
self.vid_encoding.cuda()
self.text_encoding.cuda()
self.vid_mapping.cuda()
self.text_mapping.cuda()
self.AdvAgent.cuda()
cudnn.benchmark = True
if opt.frozen == 'frozen':
print(opt.frozen, '--------')
text_param = []
bert_name = 'text_bert.text_bert'
# finetune_layer
layer_list = opt.layer_list
print(layer_list)
for name, param in self.text_encoding.named_parameters():
if bert_name in name and not any(layer in name for layer in layer_list):
param.requires_grad = False
else:
text_param.append(param)
elif opt.frozen == 'all_frozen':
print(opt.frozen, '--------')
text_param = []
bert_name = 'text_bert.text_bert'
for name, param in self.text_encoding.named_parameters():
if bert_name in name:
param.requires_grad = False
else:
text_param.append(param)
else:
# finetune all
print(opt.frozen, '--------')
text_param = list(self.text_encoding.parameters())
# init params
params = list(self.vid_encoding.parameters())
params += text_param
params += list(self.vid_mapping.parameters())
params += list(self.text_mapping.parameters())
self.params = params
# print structure
print(self.vid_encoding)
print(self.text_encoding)
print(self.vid_mapping)
print(self.text_mapping)
print(self.AdvAgent)
class Model(BaseModel):
"""
dual encoding network
"""
def __init__(self, opt):
# Build Models
self.grad_clip = opt.grad_clip
self.model_type = opt.model_type
if self.model_type == 'img':
if opt.img_encoder == 'clip':
self.vid_encoding = image_encoding_clip(opt)
else:
self.vid_encoding = image_encoding(opt)
else:
self.vid_encoding = video_transformer_encoding(opt)
self.text_encoding = Text_share(opt)
# lang-agnostic learning
from adv import Adversarial
kwargs = {'opt': opt, 'input_size': opt.text_hidden_size,
'train_level': 'sent', 'train_type': 'GAN',
'reverse_grad': False, 'nclass': 2, 'scale': opt.scale,
'optim': 'adam', 'lr': opt.glr, 'betas': (0.9, 0.999), 'gamma': 0, 'eps': 1e-8,
'momentum': opt.momentum, 'disc_type': opt.disc_type}
self.AdvAgent = Adversarial(**kwargs)
if torch.cuda.is_available():
print('use', torch.cuda.device_count(), 'gpus')
self.vid_encoding.cuda()
self.text_encoding.cuda()
cudnn.benchmark = True
self.vid_mapping = Latent_mapping(opt.visual_mapping_layers, opt.dropout)
self.text_mapping = Latent_mapping(opt.text_mapping_layers, opt.dropout)
self.init_info(opt)
# Loss and Optimizer
if opt.loss_fun == 'mrl':
self.criterion = TripletLoss(margin=opt.margin,
measure=opt.measure,
max_violation=opt.max_violation,
cost_style=opt.cost_style,
direction=opt.direction)
if opt.optimizer == 'adam':
self.optimizer = torch.optim.Adam(self.params, lr=opt.learning_rate)
elif opt.optimizer == 'rmsprop':
self.optimizer = torch.optim.RMSprop(self.params, lr=opt.learning_rate)
self.dtl_feat = dtl_feat()
self.dtl_criterion = DtlLoss()
self.tri_alpha = opt.tri_alpha
self.dtl_beta = opt.dtl_beta
self.l1_gama = opt.l1_gama
self.back_w = opt.back_w
self.Eiters = 0
def parallel(self):
self.vid_encoding = nn.parallel.DataParallel(self.vid_encoding)
self.text_encoding = nn.parallel.DataParallel(self.text_encoding)
def forward_loss(self, cap_embs, cap_bert_embs, vid_emb, *agrs, **kwargs):
"""Compute the loss given pairs of video and caption embeddings
"""
cap_emb, cap_emb_trans, cap_emb_cross, cap_emb_back = cap_embs
cap_bert_emb, cap_bert_emb_trans = cap_bert_embs
loss_tri = self.criterion(cap_emb, vid_emb)
loss_tri_trans = self.criterion(cap_emb_trans, vid_emb) * self.tri_alpha
loss_dtl = self.dtl_criterion(cap_emb_cross.detach(), cap_emb_trans, vid_emb) * self.dtl_beta
loss_feat = self.dtl_feat(cap_emb_cross, cap_emb_trans) * self.l1_gama
loss_contrastive = self.criterion(cap_emb, cap_emb_back) * self.back_w
real_idx = 1
fake_idx = 0
# update discriminator
real_loss, fake_loss, real_acc, fake_acc = self.AdvAgent.update(cap_bert_emb.detach(),
cap_bert_emb_trans.detach(),
real_idx, fake_idx)
# update encoder
others_loss = self.AdvAgent.gen_loss(cap_bert_emb, cap_bert_emb_trans, real_idx, fake_idx)
loss = loss_tri + loss_tri_trans + loss_dtl + loss_contrastive + others_loss + loss_feat
self.logger.update('Le', loss.item(), vid_emb.size(0))
self.logger.update('Le_tri', loss_tri.item(), vid_emb.size(0))
self.logger.update('Le_tri_trans', loss_tri_trans.item(), vid_emb.size(0))
self.logger.update('loss_dtl', loss_dtl.item(), vid_emb.size(0))
self.logger.update('loss_feat', loss_feat.item(), vid_emb.size(0))
self.logger.update('real_loss', real_loss, vid_emb.size(0))
self.logger.update('fake_loss', fake_loss, vid_emb.size(0))
self.logger.update('others_loss', others_loss, vid_emb.size(0))
# self.logger.update('loss_mul', loss_mul.item(), vid_emb.size(0))
self.logger.update('loss_contrastive', loss_contrastive.item(), vid_emb.size(0))
self.logger.update('real_acc', real_acc, vid_emb.size(0))
self.logger.update('fake_acc', fake_acc, vid_emb.size(0))
return loss, real_acc, fake_acc, real_loss, fake_loss, others_loss
def forward_emb(self, visual, targets, volatile=False, *args):
"""Compute the video and caption embeddings
"""
# -------video
if self.model_type == 'video':
# video data
frames, mean_origin, video_lengths, vidoes_mask = visual
frames = Variable(frames, volatile=volatile)
if torch.cuda.is_available():
frames = frames.cuda()
mean_origin = Variable(mean_origin, volatile=volatile)
if torch.cuda.is_available():
mean_origin = mean_origin.cuda()
vidoes_mask = Variable(vidoes_mask, volatile=volatile)
if torch.cuda.is_available():
vidoes_mask = vidoes_mask.cuda()
visual_data = (frames, mean_origin, video_lengths, vidoes_mask)
# -------image
elif self.model_type == 'img':
# video data
images = Variable(visual, volatile=volatile)
if torch.cuda.is_available():
visual_data = images.cuda()
target, target_trans, target_back = targets
bert_caps, lengths, cap_masks = target
if bert_caps is not None:
bert_caps = Variable(bert_caps, volatile=volatile)
if torch.cuda.is_available():
bert_caps = bert_caps.cuda()
if cap_masks is not None:
cap_masks = Variable(cap_masks, volatile=volatile)
if torch.cuda.is_available():
cap_masks = cap_masks.cuda()
text_data = (bert_caps, lengths, cap_masks)
# -------trans
bert_caps_trans, lengths_trans, cap_masks_trans = target_trans
if bert_caps_trans is not None:
bert_caps_trans = Variable(bert_caps_trans, volatile=volatile)
if torch.cuda.is_available():
bert_caps_trans = bert_caps_trans.cuda()
if cap_masks_trans is not None:
cap_masks_trans = Variable(cap_masks_trans, volatile=volatile)
if torch.cuda.is_available():
cap_masks_trans = cap_masks_trans.cuda()
text_data_trans = (bert_caps_trans, lengths_trans, cap_masks_trans)
# -------back
bert_caps_back, lengths_back, cap_masks_back = target_back
if bert_caps_back is not None:
bert_caps_back = Variable(bert_caps_back, volatile=volatile)
if torch.cuda.is_available():
bert_caps_back = bert_caps_back.cuda()
if cap_masks_back is not None:
cap_masks_back = Variable(cap_masks_back, volatile=volatile)
if torch.cuda.is_available():
cap_masks_back = cap_masks_back.cuda()
text_data_back = (bert_caps_back, lengths_back, cap_masks_back)
text_data = (text_data, text_data_trans, text_data_back)
vid_emb = self.vid_mapping(self.vid_encoding(visual_data))
txt_embs = self.text_encoding(text_data)
txt_embs, txt_bert_embs = txt_embs
if len(txt_embs) > 1:
cap_embs = ()
for k in txt_embs:
cap_embs = cap_embs + (self.text_mapping(k),)
else:
cap_embs = self.text_mapping(txt_embs)
return vid_emb, cap_embs, txt_bert_embs
def embed_vis(self, vis_data, volatile=True):
"""Compute the video embeddings
"""
# video data
if self.model_type == 'video':
frames, mean_origin, video_lengths, vidoes_mask = vis_data
frames = Variable(frames, volatile=volatile)
if torch.cuda.is_available():
frames = frames.cuda()
mean_origin = Variable(mean_origin, volatile=volatile)
if torch.cuda.is_available():
mean_origin = mean_origin.cuda()
vidoes_mask = Variable(vidoes_mask, volatile=volatile)
if torch.cuda.is_available():
vidoes_mask = vidoes_mask.cuda()
vis_data = (frames, mean_origin, video_lengths, vidoes_mask)
return self.vid_mapping(self.vid_encoding(vis_data))
def embed_txt(self, txt_data, volatile=True):
"""Compute the caption embeddings
"""
txt_data, target_trans = txt_data
bert_caps_trans, lengths_trans, cap_masks_trans = target_trans
if bert_caps_trans is not None:
bert_caps_trans = Variable(bert_caps_trans, volatile=volatile)
if torch.cuda.is_available():
bert_caps_trans = bert_caps_trans.cuda()
if cap_masks_trans is not None:
cap_masks_trans = Variable(cap_masks_trans, volatile=volatile)
if torch.cuda.is_available():
cap_masks_trans = cap_masks_trans.cuda()
txt_data_trans = (bert_caps_trans, lengths_trans, cap_masks_trans)
# BERT
bert_caps, lengths, cap_masks = txt_data
if bert_caps is not None:
bert_caps = Variable(bert_caps, volatile=volatile)
if torch.cuda.is_available():
bert_caps = bert_caps.cuda()
if cap_masks is not None:
cap_masks = Variable(cap_masks, volatile=volatile)
if torch.cuda.is_available():
cap_masks = cap_masks.cuda()
txt_data = (bert_caps, lengths, cap_masks)
txt_data = (txt_data, txt_data_trans)
txt_embs = self.text_encoding(txt_data, reference=True)
cap_embs = ()
for k in txt_embs:
cap_embs = cap_embs + (self.text_mapping(k),)
return cap_embs
def train_emb(self, videos, captions, *args):
"""One training step given videos and captions.
"""
self.Eiters += 1
self.logger.update('Eit', self.Eiters)
self.logger.update('lr', self.optimizer.param_groups[0]['lr'])
# compute the embeddings
vid_emb, cap_emb, cap_bert_emb = self.forward_emb(videos, captions, False)
# measure accuracy and record loss
self.optimizer.zero_grad()
loss, real_acc, feak_acc, real_loss, fake_loss, others_loss = self.forward_loss(cap_emb, cap_bert_emb, vid_emb)
loss_value = loss.item()
# compute gradient and do SGD step
loss.backward()
if self.grad_clip > 0:
clip_grad_norm_(self.params, self.grad_clip)
self.optimizer.step()
return vid_emb.size(0), loss_value, real_acc, feak_acc, real_loss, fake_loss, others_loss
NAME_TO_MODELS = {'nrccr': Model}
def get_model(name):
assert name in NAME_TO_MODELS, '%s not supported.'%name
return NAME_TO_MODELS[name]